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I. INTRODUCTION 

We were very interested in the extended je.t calculus of Bassetto, 

Ciafaloni and Marchesini (BCM),1*233) which allows one to compute the 

production of colorless (quark-antiquark-multigluon) clusters in jets. In 

preparation for some applications of their formalism, we rederived the basic 

equations for the modified propagators; we present our findings in this short 

note. 

In our derivation we attempt to keep all planar graphs, and only planar 

graphs. This results in a somewhat different set of equations for the 

modified propagators. The solutions of these equations do, however, obey the 

sa;ne sm rules which BCM found for their case; hence they are as appealing 

physically. 

The colorless clusters produced by extension of the BCM arguments to our 

propagators are more general than in the BCM case. Instead of consisting 

solely of one quark-antiquark pair and multiple gluons, they may contain 

additional quark-antiquark pairs. This does not detract from their 

usefulness, however. 

Solutions of our equations are damped in $ in a manner similar to those 

of BCM, although the exact behavior is a little different. The most striking 

result of their investigation, finite mass for the color singlets as C2 + =, 

is preserved. 



II. EQUATIONS FOR' THE'GENRRATING FUNCTIONS 

As pointed .out in Eq. (3.5) of Ref. 1, the ordinary jet calculus of 

4) Konishi, Ukawa and yeneziano can be summarized by the equation 
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is a generatipg functional for the normalized inclusive distributions of n 

partons of off-shell mass Q. in the a parton jet of bass up to Q. 

This can theube used to obtain an equation for the exclusive quantities 

if one writes 

Ga(Q2, 4; {Ed(x)}) = 1 + Fa(Q2, $; (-1 t- E,(x) 1) (2.3) 

and expands in 5, 'to obtain the exclusive probabilities. The new generating 

functional G obeys the related equation (E = Qi/k2) 
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1t is especially important t.o note that if all the functions 5 are set 

equal to 1, each G nust be 1 and the terms on the right hand side cancel due 

to 
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III. PLANAR GRAPHS 

We now wish to apply this formalism to an idealized world in which only 

planar graphs are included. When the number of colors is infinite all QGD- 

like theories go over to this situation. Assuming that three colors are 

already basically infinite, we wish to only include the planar graphs from the 

start. Pollowing Witten 5) and BGM,L) we draw the quarks as oriented lines .and 

the gluons as quark-antiquark pairs - i.e., we are labelling the color 

indices. 

In this regard, we-notice that there are two possible ways of drawing a 

gluon - either one can have the quark line on top as the gluon proceeds from 

left to right across the page, or vice versa (see Ng. 1). We will call the 

first possibility g, and the second possibility ga. As far as can be 

determined, the gluon of flield theory can be represented either by gu or by 

ga, but we will specify which is being used.each time since it then is much 

easier to describe the planar 'graphs exactly. 

All of the vertices in Eqs. (2.4) above have one parton splitting into 

two others with momentum fractions z and 1-z. We will use the convention that 

momentum fraction z is carried by the parton which goes off toward the top of 

the page, and fraction l-z is carried by the parton which goes toward the 
: 

bottom of the page, Once this is done, we see that the planar graphs lack 

some of the possible branchings used previously. In particular, when we have 

an incident gluon g,, only the graph of Fig. 2 is allowed; we cannot have the 

vertex involving Pp4(z). 
g 

This means that when G is restricted to the probabilities coming from 

planar graphs (which should equal the probabilities coming from all graphs in 

the NC + 00 limit), the basic evolution equations must be modified. We must 

remove the non-planar branching gu + q(z)+q(l-z). In order to have the 
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desired probability conservation we must therefore also alter the virtual 

potential for the gluon, so that 

- 
Pg” (2) 2 = 2. ;gqz> + 

U 
g 

U 
3 P;q(z, 

U 
(3.1) 

rather than 

P;( Z> =+i!; (2) -q 
U 

i-.Pg (2) 
U 

as in Eq. (2.3) of Ref. 1. No such modification is'necessary for the quarks; 

there is a planar interpretation of all the possible vertices. 

Given this, the basic equations for the generating functionals are 
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and 

4nk2 
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If we now ask for the. probability that gluons go only to gluons, this is the 

same as inserting 5 7 1 for All the gluons in these equations, and 5 = 0 for 

all the quarks. Thfs then gives the equation for ag(k2,Qi),.the probability 

.(3.3) 

that gluons go only to gluons: 

Tao 
- cL~Ol 

.‘A = 

aT =. o~(;,T~) [- 5 / [1-o(+‘)]d?+ (1-og)] - 6cr2i 
T 

0 

with T = Nf %n(k2/A2); d = - b = 
llNc-2Nf 

6vb 12ll ; CA =.N ; and .A is defined by c 
1 a =- 

S b-t l 

This differs somewhat from Eq. (3.11) of Ref. 1 but they agree in the'Nc+ 00 

limit. 

We now wish to compute the color connected propagators l?'(x). We define 

rq by saying that we have a tree (see Fig. 3) and we count clockwise around 
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the branches of the tree, starting with the trunk (particle incident from the 

left) until we come to the first non-gluon. This is the object whose x is 

labelled in Fig. 3; the kind of object is the upper label q or y. 

Offhand, therefore, one might think one could have r qi rqj a - ii. 
g' Qi' qi' r J or rgl 

(the i,j indices label flavor of the quarks). However there are no 

pi T-i 
qi 

0rI” . 
gL.I 

This can be seen by drawing a typical planar diagram such as 

Fig. 3. We see that the requirement of planarity will force the first non- 

gluon coming clockwise off a quark to be a quark - not an antiquark. 

Burthermore, the first non-gluon coming off an "upper" gluon fs a'quark, 

whereas the first non-gluon coming off a "lower" gluon is an antiquark. 

We now write the generating functional for the planar graphs in the form 

Ga(Q2, ++-$(x)~) ={ ll / dxl.-.J dxJJcl(xl)...uc, (x,) 
ci n 

(3.5) 
Cl"'Cn *E a (Q2, Q;; x1* l ox,) 

C C 
where E i**. n 

a 
is the exclusive probability to see cl at x1, c2 at x2, and cn 

at xr;. Note that because we are insisting on planar graphs, the order cl...cn 

matters. Define Sq to be a variation which searches out the first U which is 

a quark U 

6qGa(Q2* 4+@1) 
m(x) I 

= rq (Q2, Q;; x) 
all other a 

U's = 1 

(3.6) 

ActFng with this variation on Eqs. (3.2) and (3.3) will either pick the 

"first" quark out of the "upper" leg, or out of the "lower" leg after the 

bifurcation. Using the graphical technique of BCM, we therefore expect the 

equations to take the form depicted in Fig. 4. 

Note that BCM make a special equation for $, which is for the case where 



the flavor carrying quark coming out is the same one as came in. This is not 
. 

necessary; 2 I': # < due to different starting conditions at Qz = Q,. We will 

use ri if we need the same flavor out as in. 

Noting that 

(3.7) 

we,obtain the equations for general x: 

47;k2 d a(k2> -2 +k2 ,x)=X&k2 ,d+Cpl;; { 
(-2-l) Ij k2 x - z i ( ,;)+(",2)$k*,~) 

+ (21 cl(k2)rji(k2,&)j + 2Cf1+ E l-z [-$k*,x)+; rj,(k*,;) j 

+ 2CF1&-+(k2,x)+ + I';(zk2, ;)+ ";$ I'i(k*, &)I 
e. 

(3.8) 

4nk2 d - --y r$k2,x) 
11N 

a(k2) dk 
= I$k2,x)[+ - >]+2C;jEde{+ l';(k2,;) + 

& 

1-E 2 
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or alternately, 

4nk2 d ao dk2 +k2,x) = $ C,r$c2 ,x1-2C&r’ )<(k2,x) 

+ J G Tji(X(z)k2, ;, P?(z) + 1% Py?z) r;(X(z)k*, f) 

(3.10) 

Lirk 2d - +y 2 r$k*,x) = - $k2, x>[- 5 CA + 2CA 1’ dP] 

. 2- x 

) Pig’ z) + 1 dz T( z)og( A( z)k*) r~[“~l;z~ ‘1-z) 

% fji(X(z)k*, 5) P;; (z) (3.11) 

Here we have used the same convention for X(z) as do BCM. 
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IV. MOMENT EQUATIONS 

We now consider the zero moments of Eqs. (3.8) and (3.9). These give 

[defining SQ(k2) = 1 I <(k2,x)dx, sG(k2) = 1 I $(k2,x)dx] 
5 j 

4rk* d -y- ---$ SQCk2) = - 4 c,{sG(k2) - SQ(k2)[l-a(k2)]] 

* 2 cp I “‘dz, 
E 

y Is,(zk')-SQ(k2)[1-o(zk2)]] (4.1) 

4rik2 d s (k2) 
llNC Nf 

Oz G; = s,(k*> [T - -y] - + cASG(k2)[l*u(k2)]+~ SQ Nf 

+*c,[ '-'$ [-s,(k2) + SG(zk2) + a(zk*) SG(k2) + o(k*) SG&k2)] 
E 

It is tempting to guess that 

1 1 <(x)dx.= Sq(k*) = SQ = const [= '1, by evaluation at k2 3: Q:] 
9 

(4-3) 

since every quark coming in has some "first" quark coupled to it. If we then 

.have 

sG(k2) = sQ[ 1 - dk2) 1 (4.4) 

the first equation, (4.1), will be identically satisfied. 

Substituting (4.3) and (4.4) into the second equation, we find exactly 

the equation for o(k2), (3.4). The sum rules of BCM, Eq. (4.2) of Ref. 1, 

therefore, do hold for proper summation over the final index; 
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We now take higher moments of Eqs. (3.10) and (3.11) and find the moment 

equations 

T 2 rjih, 4 = - & I'i(T, n) 7 dr'[l-ag(r')] 

+-&- cF+=, n)(l-o,(s)) , 

Aqg(n)[l+a (T)] 
+ l$(-r, n) " 

Aqg(n)G(r, n) 
41ib + q iab (4.51 

= -A ri ; dr'[l-og(r')] 

(l+a (-r)>Agg(n) 
CT, n> [ l-rrgCd + isb 

Nf '. . 
-t- rJ CT, d 12nb g 

These also differ somewhat from Eqs. (4.3) of 

I. + 4 g- Aqq(n) 1 r+, a> 
i 

(4.6) 

BCM. 
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v. FORMATION OF COLOR SINGLETS 

There are a number of minor differences between our equations-and those 

of BCM; however only two of these are likely to have major consequences. 

Hrst, the dominant terms as Q2 + -in the right hand side of Eq. (4.5) 

are smaller by a factor of two than those in Eq. (4.3) of Ref. 1. We don't 

reaI.ly understand this, since we believe they should agree.. Since an overall 

factor on the right hand side of Eq. (4.1) will not affect the sum rule 

derivation, we have been unable to find an independent way of testing this. 

The second major consequence arises from the inclusion of the second term 
. 

on the right hand side of the tii equation as shown in Ng. 4. This shows up 

as the term 

I$(r,. n) Ay(n)/4nb 

in Eq; (4.5). This will create graphs in the + . . i propagator like those in Ng. 

5a; to obtain a "color connected" propagator all the particles inside the 

dotted line must be included. Some of these are emitted toward the bottom of 

the page. These may include additional Qo pairs whose x is not "measured". 

This is in contrast to the BCM method, which includes only.graphs like'those 

shown in Ng.I5b. 
. . 

While the BCM method is simpler, we think that it does.not include all 

the possible planar graphs for SU(n). Inclusion of the extra term makes life 

less beautiful; however, as we show below it does not ruin the major result. 

We now form mesonic color singlets following BCM. Sa.$es. of the types 

of graph to be included are displayed in Ng. 6. As in their case; only the 

4 + W? g i gg, and q + gq vertices are allowed; the g * qq vertex will not 

give a color singlet with their construction. 
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VI. NUMERICAL RESULTS 

We restrict ourselves here to presentation of a few illustrative results; 

the applications of the formalism which were our original goal will be 

discussed in another paper. 

In Figure 7 we show the solution og(r) to equation (3.4), the probability 

that gluons go only to gluons. Note the rapid damping as Q2 + 00 . 

Similar.damping is seen for the propagators I". In.Ngs, 8, 9, and 10 we 

compare various propagators rq with the corresponding "ordinary" propagators 

Dq computed using the Altarelli-Parisi-Owens equations. Ngure 8 is perhaps 

the most illustrative of the damping created by the semi-inclusive definition 

of the f propagators.. We see that I': a and Dt have the same values for small 

T (in fact all moments start at 1 at T = ro), but that all the moments of IYt 

drop rapidly at large Q*. Similar effects can be seen in Figs. 9 and 10; of 

course since these T and D propagators start at 0 at T = 'c 
0’ 

they are not 

required to have the same values at other small Q*. 

It is this damping at large Q which restricts the mass of produced 

colorless clusters to a finite value. Followed BCM, we write the cross 

sections for production of q(x ) 
2 and :(x1) in colorless clusters such as those 

in Fig 6 as 

k2do 

odk2dx dx I 1 2 c-s* 
= -+$ 1 ' c I F D;(Q2, k2 x) 

C cl=2 
(6.1) 

I dz iClC2 
2(1-z) c ,.,fl (A(z>k2, Q;; 

x1 
,) 'z2 (h(1-z)k2, Qf,; xc;~z,) 

An approximation for the mass of the colorless clusters M2 can be obtained as 

follows: 
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First we note that if a partion of mass k' decays to a colorless cluster 

of momentum fraction W and some other system of p' 2 with momentum fraction 

l-W, with the two systems having perpendicular momentum pl relative to the 

direction of k, then in the infinite momentum frame 

Now in Zq. (6.1) the parton of momentum k carries momentum fraction x of the 

initial large momentum in the jet, so that W = X/x, where X is the momentum 

fraction of the jet carried by the colorless cluster. It is also true that 

x ) x1 + x2, so the relation 

k2 +& 

is reasonable. 

To estimate the color singlet mass spectrum, BCM then substitute the 

'2 boundaries k M2X =-andX=xl+x 
x1+x2 

2 into Eq. (6.1) to obtain 

do i M* - 
dM2dX 

dxldx2 6(x1 + x2 - X) 2do 
dM dxldx2 

The next problem is then to estimate the integral. over the. F propagators, 

Again following the lead of BCM, we return to our equations (3.10) and 

(3.11). We define the functions 

xI'(k2, <, x) = M (k2Q$ x) 

and obtain equations for them by multiplying (3.10) and (3.11) through by x. 
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With the hypothesis that M(k*,x) = A(k2x), the equations simplify 

considerably. In fact if we take the limit k*+ 00 with kx fixed, the 

functions A(k2x) then become the solutions of extremely simple equations 

Y $ A;(y) = 

with the solutions 

(6.2) 

cF 
This is similar to the behavior found by BCM, except that the exponentm , 

for the quark propagator YJ i is smaller than theirs by a factor of 2. This 

does not affect their conclusion about the damping of the mass clusters: Eq. 

(6.1) becomes 

M2do = zlrx 1' li dx D; (Q2, + , x) a(M2) 

adM2dX C' x 

l-X(1-w)/x 
I dz ;='=* (z) 

IS/X 
c 

(6.4) 

and the large M2 behavior of A damps the result as before. 
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F'IGUFZ CAPTIONS 

1) Representation of basic particles in our graphs.' The particles are 

proceeding from left to right across the page. 

2) The only planar graph for the. splitting of an "upper" gluon into a quark- 

antiquark pair. 

3) Sample graphs for the color connected,propagators. 

.4) Graphical depiction of equations (3.9) and (3.8). The box depicts the 

virtual potential; solid circles depict all possible QGD happenings; half 

circles with lines on both sides stand for the color connected propagators 

P; 'and the open circle stands for the probability, og3that gluons go only 

to. gluons. 
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5) Sample.graphs for the propagators I? . BCM include only graphs like 5bj; 

our equations also have graphs like 5a. 

6) Sample graphs contained in the sum in Eq. (6.1). The "bubble" encloses a. 

color singlet. 

7) The probability that gluons go only to gluons 

Sj Comparison of propagators for quark + quark (same flavor) for moments 

II= I, 6 and 21. 

9) Comparison of propagators for quark + quark (different flavor) for momenta 

n = 1,6 and 21. 

10) Comparison of propagators for gluon + quark for moments n = 1, 6 and 21. 
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